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In this Brief Report, a spin-1 spin-glass model under the presence of a uniform crystal field is investigated.
It is shown that the model presents both continuous and first-order phase transition separated by a tricritical
point. The phase diagram is obtained within the replica-symmetric solution and exhibits reentrance effects at
low temperatures which can describe inverse freezing phenomena.
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Tricritical behavior and reentrance phenomena associated
with first-order transitions �FOTs� in disordered systems
have been the subject of recent studies. For instance, inves-
tigations of inverse freezing phenomena, where the ordered
phase is more entropic than the disordered one, have been
conducted by several authors.1–7 Such nonusual behavior has
also been observed in fermionic disordered systems �see Ref.
8 and references therein�. More recently, a spin model for
strain glass has been used to account for the effects of dis-
order in ferroelastics which can display reentrance
phenomena.9 Reentrance phenomena has also been observed
in renormalization-group analysis of the spin-glass �SG�
models on hierarchical lattices.10,11 In general, the models
involved in those investigations are closely related to the
Ghatak-Sherrington �GS� model,12 which has been inten-
sively studied since its introduction.5,13–17

The Ghatak-Sherrington model12 is a generalization of the
widely known infinite-range Sherrington-Kirkpatrick �SK�
model for a SG �Ref. 18� with arbitrary spin S�1 /2 and
inclusion of a uniform crystal field. For integer spin S, the
GS model displays both first-order and continuous transi-
tions. The crystal field �D�-temperature �T� phase diagram
for S=1 has a continuous transition line which meets a FOTs
line at a tricritical point. These lines separate the paramag-
netic from the spin-glass phase. One of the most interesting
feature of the S=1 SG model is the appearance of reentrance
effects occurring at low temperatures which has been re-
cently associated with inverse freezing phenomena.1,3–7

Although it is widely accepted that the correct mean-field
solution for infinite-range spin-glass models is given by the
Parisi Ansatz,19–21 the replica-symmetric �RS� solution gives
an initial clue to general topologies of phase diagrams. For
the GS model, the RS solution has revealed a number of
difficulties in the low-temperature region where first-order
transitions take place.15 Inside this region, we can find up to
three distinct paramagnetic solutions. However, only one of
these solutions is stable with respect to replica-symmetry
breaking �RSB� fluctuations. On the other hand, we may find
up to four distinct spin-glass solutions in the same region
which, unlike the paramagnetic case, are all unstable with
respect to RSB. Therefore, even within the RS solution treat-
ment we are faced with the problem of choosing the most
adequate SG solution in order to determine the FOT line. We
believe that this fact is at the origin of some controversies
with respect to the location of the FOT line predicted by the
RS solution.12–14 Recently we have seen some progress with

respect to the correct location of the FOT line for the GS
model.16,17 There remain, however, some points which need
to be clarified about the low-temperature behavior of the GS
model.

Another route of investigation on the mean-field behavior
of spin glasses is the Thouless-Anderson-Palmer �TAP� ap-
proach which avoids the replica method.22 From the TAP
equations, one can obtain a simpler set of equations by ex-
cluding the so-called Onsager reaction-field term so that one
gets the naive mean-field equations. Bray, Sompolinsky, and
Yu �BSY� �Ref. 23� introduced an exactly soluble infinite-
range SG model which is also a generalization of the SK
model. For the BSY model, one can obtain exactly the naive
mean-field equations. These authors also studied their model
by means of the replica method and noted some interesting
features. For instance, the RS solution describes a SG phase
whose entropy is always non-negative for finite temperatures
and vanishes at zero temperature, in contrast to what is ob-
served in the RS solution to the SK model. In spite of this,
the RS solution to the BSY model is unstable in the whole
SG region. Due to lack of the Onsager term, the BSY pre-
dicts a critical temperature that is twice the result obtained
for the SK model. Notwithstanding this, the low-temperature
behavior of both BSY and SK models are qualitatively the
same. In particular, they have the same zero-temperature
properties.

In order to gain further understanding about tricritical be-
havior and reentrant effects in spin-glass systems, we con-
sider a BSY version of the GS model. Our analysis is based
on the replica approach since we want to compare our find-
ings with the known results obtained for the GS model in
previous studies.

The model consists of a set of m classical spin-1 variables
Sia�a=1, . . . ,m� located at each site i=1, . . . ,N. The Hamil-
tonian is given by

H = −
1

2m
�
�i,j�

�
a,b=1

m

JijSiaSjb + D�
i=1

N

�
a=1

m

Sia
2 , �1�

where Sia= �1,0; the �i , j� sum is over all distinct pairs of
sites; the exchange interactions Jij are quenched random
variables with the Gaussian distribution,
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P�Jij� = � N

2�J2�1/2

exp�−
NJij

2

2J2 � , �2�

and D represents the effect of a uniform crystal-field aniso-
tropy term. Several known cases are recovered in special
limits: �i� m=1 recovers the Ghatak-Sherrington model; �ii�
for D→−� the BSY model is reobtained, including the SK
model for m=1.

Since we are interested in the m→� limit, the quenched
free energy per spin is given by

− �f = lim
N→�

lim
m→�

1

Nm
�ln Z�J, �3�

where � �J denotes the configuration average over the disor-
der. In order to proceed further the use of the replica method
is introduced through the identity ln Z=limn→0�Zn−1� /n.
Therefore, the averaged free energy density may be ex-
pressed as

�f = lim
n→0

lim
m→�

1

mn
min �mn��q��	� , �4�

where

�mn��q��	� =
1

4
m2��J�2 �

�,�=1

n

q��
2 − ln Tr�Sa

�	 exp�Hmn�

�5�

and

Hmn =
1

2
��J�2 �

�,�=1

n

�
a,b=1

m

q��Sa
�Sb

� − �D�
�,a

�Sa
��2. �6�

The condition for �mn��q��	� to be an extremum with re-
spect to q�� yields

q�� =
1

m2 �
a,b=1

m

�Sa
�Sb

��mn, �7�

where �Sa
�Sb

��mn indicates the thermal average with respect to
the replica Hamiltonian �6�.

The replica-symmetric solution can be considered now.
As in the BSY model, there is a nontrivial diagonal q�� and
the requirement of a finite susceptibility leads us to consider
the RS Ansatz in the form

q�� = q �� � ��, q�� = q + �̄/m . �8�

Substituting Eq. �8� into Eq. �4� the free energy per spin is
obtained

�f =
1

2
��J�2�̄q − 
−

1

2
��J�2�̄m2�x� + ln z�x��

x
, �9�

where

z�x� = 1 + 2e−�D cosh��Jqx + �2J2�̄m�x�� �10�

and

m�x� =
2 sinh��Jqx + �2J2�̄m�x��

e�D + 2 cosh��Jqx + �2J2�̄m�x��
. �11�

The notation has been simplified by introducing

�O�x��x = �
−�

�

O�x�e−x2/2 dx
2�

.

The equilibrium equations �f /�q=0=�f /��̄ yield

q = �m2�x��x, �12�

��̄ =
1
q

�xm�x��x. �13�

An integration by parts allows to rewrite Eq. �13� as

�̄ = 
 p�x� − m2�x�
1 − ��J�2�̄�p�x� − m2�x���x

, �14�

where

p�x� =
2 cosh��Jqx + �2J2�̄m�x��

e�D + 2 cosh��Jqx + �2J2�̄m�x��
. �15�

The set of Eqs. �9�, �12�, and �13� determine the phase
diagram which presents paramagnetic and spin-glass phases.
It should be mentioned that for numerical purpose Eq. �14� is
more appropriate than Eq. �13�.

The paramagnetic phase is described by q=0 and

�̄ =
1 − 1 − 4�2J2p2

2�2J2p
, p =

2

e�D + 2
. �16�

The simple form of p in the last equation shows that it is
a single-valued function both in terms of inverse temperature
� and anisotropy crystal field D. It is important to recall that
in the Ghatak-Sherrington model the behavior of the corre-
sponding term is more subtle.15 As a matter of fact in the GS
case, p represents a true order parameter and can display up
to three distinct solutions. Thus we have to find an additional
criterion in order to determine the thermodynamically stable
paramagnetic solution. In the present case, p can be regarded
as a mere density and a simple analysis shows that the para-
magnetic solution is physically acceptable as long as the con-
dition

2�2J2

e�D + 2
	 1 �17�

holds.
Let us set J=1 and consider the D−T phase diagram,

where T=1 /�. From Eq. �17� the paramagnetic is stable at
high temperatures and is bordered by the line,

D = T ln�2�2 − T�
T

� . �18�

At low temperatures, there is a spin-glass phase with q
�0. Expanding Eq. �12� for small q, one finds

q = aq + bq2 + O�q3� , �19�

where

BRIEF REPORTS PHYSICAL REVIEW B 82, 052402 �2010�

052402-2



a =
pT

T2 − �̄p
�20�

and

b =
1

9

�1 − 3p�
p3 Ta4. �21�

Thus the spin-glass phase exists as long as a	1 and b
�0. From the above expansion, one finds a tricritical point
given by a=1 and b=0. Therefore, the phase diagram con-
sists of a continuous transition line given by Eq. �18� as long
as T�2 /3. For 0
T	2 /3, there is a region of coexisting
paramagnetic and spin-glass solutions and one has a first-
order transition which can be numerically determined by
equating the corresponding free-energy densities of these so-
lutions. The continuous and first-order transition lines meet
at the tricritical point given by

T = 2/3, D = 4 ln 2/3 = .924169 . . . , �22�

which should be compared with the corresponding results for
the tricritical point found for the GS model: T=1 /3, D
=1 /2+2�ln 2� /3=0.962098. . . �Ref. 12�.

At zero temperature, the first-order transition can also be
easily found. First one notes that limT→0 ��̄=� is finite.
From Eq. �12� one finds

q = 2�
x�

�

e−x2/2 dx
2�

= erfc�x�/2� , �23�

where

x� =
2D − �

2q
, �24�

and erfc is the usual complementary error function. The
above expression is valid for x��0. In this regime, one also
finds

� = � 2

�q
�1/2

e−x�2/2, �25�

and, for the spin-glass free-energy density f0,

f0 = Dq − �2q

�
�1/2

e−x�2/2. �26�

For negative values of x�, we obtain, at the absolute zero
of temperature, q=1, �= �2 /��1/2, and f =−�� /2�1/2. Since
from Eq. �9� the free energy of the paramagnetic solution at
T=0 is zero for D�0, the first-order transitions at T=0 is
found by imposing, f0=0 from which follows, after some
simplifications with the help of Eqs. �23� and �25�,

x� erfc�x�/2� =
1

2�
e−x�2/2. �27�

The above equation is exactly the same obtained previ-
ously for the replica-symmetric solution15 to the GS model.
The numerical solution to this equation is x�=0.612003. . .,
from which results, jointly with Eqs. �23� and �25�, q
=0.540535. . . and �=0.899003. . ., respectively. These nu-

merical results allow us to determine the location of the first-
order transition at T=0,

D0 = D�T = 0� = 0.899033. . . �28�

Since the present model as well as the GS model have the
same ground state this is an expected result of general valid-
ity. Thus, as in the GS model a stable RSB solution should
give a slightly lower value for D0, and so the reentrance
effect must be enhanced. In fact, a previous numerical study
of the naive mean-field equations for T=0 showed that D0
�0.86.24

For 0	T	2 /3, the first-order transition line can be ob-
tained by numerically solving the equilibrium equation and
requiring that the spin-glass and paramagnetic solution have
the same free energy. The resulting phase diagram is de-
picted in Fig. 1. As in the GS model case, there is a reen-
trance to the paramagnetic phase at low temperatures. How-
ever, one notices that as T→0 there is no new transition to
the SG phase in the vicinity of D0 as was found in the replica
solution to the Ghatak-Sherrington model.15 This is a direct
consequence of the vanishing of the spin-glass entropy as
can be verified by an analysis of the Clausius-Clayperon
equation along the FOT line.

In spite of the vanishing of the spin-glass entropy at T
=0 for any value of D, a stability analysis along the lines
pioneered by de Almeida and Thouless25 shows that the
replica-symmetric spin-glass solution is always unstable.
Again, the numerical analysis of the stability conditions be-
comes easier than in the corresponding Ghatak-Sherrington
case since we did not find any evidence of complex eigen-
values for the replica stability matrix. The instability is sig-
naled by the nonpositiveness of the replicon eigenvalue,

�R = T2 − ��p�x� − m2�x��2�x. �29�

Therefore, a correct description of the spin-glass phase
requires a complete solution to the corresponding Parisi’s

�

� � � � � � �
� �

� � � � �

T

0 0.5 1.0 1.5 2.0

D

0

0.4
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1.2

T

B

A
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FIG. 1. Phase diagram obtained within the replica-symmetric
approximation. The full AT curve is the line of continuous transi-
tions and the broken curve BT is the line of first-order transitions.
These two curves meet at the tricritical point T.
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equations �the full RSB—FRSB—scheme�, as have been
done for the GS model.16,17 We can anticipate that in the
FRSB treatment, the main features of the phase diagram
would not be modified. The continuous transition line as well
as the location of the tricritical point will not be changed but
a slight modification in the location of the FOT line is ex-
pected in a similar way to what is observed in the GS model,
increasing the reentrance effect for T�0.

In conclusion, a naive version of the Ghatak-Sherrington
model was investigated by the replica approach. The phase
diagram was determined within the replica-symmetric An-
satz. Both analytical and numerical results show that the
replica-symmetric solution to the present model is simpler to
analyze than the corresponding Ghatak-Sherrington model.

In spite of this, the phase diagram for both models share
several common features. At high temperatures, there is con-
tinuous transition line from the paramagnetic to the spin-
glass phase while at low temperatures, there is a line of first-
order transitions. These two lines meet at a tricritical point.
The present model also exhibits a reentrance from the spin-
glass to the paramagnetic phase. We believe that the present
model should be very useful to further investigate other as-
pects related to inverse freezing phenomena through other
approaches as TAP equations22 or the real-space
renormalization-group treatments.10,11
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